I recently ordered a bunch of I2C breakout boards to tinker around with. The first thing I implemented, using the Pi4J library, was a simple eight by eight version of Conway’s Game of Life using an I2C controlled┬ábicolor LED matrix from Adafruit.
I2C 8x8 Game of Life

Next I build a simple two-wheeled robotic platform (RPi2C) to test the 9DOF MPU9150 breakout board from Sparfun. This little chip integrates accelerometer, gyroscope, and magnetometer into a single package and also includes what Invensense calls a digital motion processor for on-board sensor fusion.

The two wheels are driven by basic Parallax continuous rotation servos and controlled by the same I2C based PCA9685 breakout board from Adafruit I already used on the RaspberryPylot. As the MPU9150 DMP requires uploading of firmware via I2C which I still need to implement, I’m currently simply using the raw gyro data and a PID controller for very basic stabilisation. Also the low rotational speed of the servo motors limits the ability to recover from disturbances. Fusing the sensor data of the accelerometer and the gyro, an improved controller, and maybe stronger motors should deliver better results, soon.

The platform also includes a basic bread-board, a bunch of potentiometers, switches, and buttons, as well as an ADS1115 16-Bit ADC and a SX1509 16 Output I/O Expander for happy tinkering. ­čśë

Maiden-Flight RaspberryPylot

RaspberryPylot made it!
With perfect weather and a great ground-team supplying me with food, the RaspberryPylot successfully completed its maiden-flight today. A laptop with gamepad, a wifi-connection using two simple USB dongles, an I2C servo controller and a Raspberry Pi and it’s ready to go:


Control via the gamepad was very comfortable and easy. Two analogue sticks for elevator, rudder, and ailerons. Two buttons to increase and decrease throttle and another two buttons to control the ailerons as flaps (flaperons). We didn’t test the master/slave mode today, but one can attach two gamepads and use one master button to switch between both with independent control profiles for each mode. In principle one could pass over the control of only one single axis at a time.

Many thanks to the CRRCSim team for creating such a fun way of training pre-flight.


First Steps towards RaspberryPylot

I’m working on using the Raspberry Pi as a remote control replacement. The “chain of command” goes as follows:

USB-Gamepad > Laptop >TP-WN722NC
TP-WN722NC > Raspberry Pi > I2C > PCA9685 > Servos & Motor Controller

So far so good, everything seems to be working with acceptable low latency. I’ll just need to code some security measures, if the signal is lost (motor off and servos positioned for a slight turn).

As the last weeks were rather busy and I was stuck with a bad cough, I’m still not completely finished with the Easy Star II. As the Raspberry Pi won’t fit completely into the fuselage, I’ll have to adapt the canopy for it:

I made some of the code used available on github.